skip to main content


Search for: All records

Creators/Authors contains: "Yang, Zhengwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available July 25, 2024
  4. Abstract

    This paper describes a set of Near-Real-Time (NRT) Vegetation Index (VI) data products for the Conterminous United States (CONUS) based on Moderate Resolution Imaging Spectroradiometer (MODIS) data from Land, Atmosphere Near-real-time Capability for EOS (LANCE), an openly accessible NASA NRT Earth observation data repository. The data set offers a variety of commonly used VIs, including Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Mean-referenced Vegetation Condition Index (MVCI), Ratio to Median Vegetation Condition Index (RMVCI), and Ratio to previous-year Vegetation Condition Index (RVCI). LANCE enables the NRT monitoring of U.S. cropland vegetation conditions within 24 hours of observation. With more than 20 years of observations, this continuous data set enables geospatial time series analysis and change detection in many research fields such as agricultural monitoring, natural resource conservation, environmental modeling, and Earth system science. The complete set of VI data products described in the paper is openly distributed via Web Map Service (WMS) and Web Coverage Service (WCS) as well as the VegScape web application (https://nassgeodata.gmu.edu/VegScape/).

     
    more » « less
  5. The Cropland Data Layer (CDL) is currently the only subfield level high resolution crop-specific land cover data product over the entire conterminous United States (CONUS). It has been widely used in agricultural industry, business decision support, research, and education worldwide. However, CDL data has its limitations. It is an end-of-season land cover map which is not available within growing season. Moreover, CDLs in early years have many misclassified pixels (relatively low accuracy) due to cloud cover and lack of satellite images. This paper will present the studies of using machine learning technique to address these issues in CDL data. Specifically, we will present the design and implementation of a machine learning model for agro-geoinformation discovery from CDL. Several application scenarios of the proposed model, including prediction of crop cover, crop acreage estimation, in-season crop mapping, and refinement of the earlyyear CDL data, are demonstrated and discussed. 
    more » « less
  6. Winter wheat is a main cereal crop grown in the United States of America (USA), and the USA is the third largest wheat exporter globally. Timely and reliable in-season forecast and year-end estimation of winter wheat grain production in the USA are needed for regional and global food security. In this study, we assessed the consistency between the agricultural statistical reports and satellite-based data for winter wheat over the contiguous US (CONUS) at both the county and national scales. First, we compared the planted area estimates from the National Agricultural Statistics Service (NASS) and the Cropland Data Layer (CDL) from 2008–2018. Second, we investigated the relationship between gross primary production (GPP) estimated by the vegetation photosynthesis model (VPM) and grain production from the NASS. Lastly, we explored the in-season utility of GPPVPM in monitoring seasonal production. Strong spatiotemporal consistency of planted areas was found between the NASS and CDL datasets. However, in the Southern Great Plains, both the CDL and NASS planted acreage were noticeable larger (>20%) than the NASS harvested area, where some winter wheat fields were used as forage for cattle grazing. County-level GPPVPM was linearly related with grain production of winter wheat, with an R2 value of 0.68 across the CONUS. The relationships between grain production and GPPVPM in those counties without a substantial difference (<20%) between planted and harvested area were much stronger and their harvest index (HIGPP) values ranged from 0.2–0.3. GPPVPM in May could explain about 70–90% of the variance of winter wheat grain production. Our findings highlight the potential of GPPVPM in winter wheat monitoring, especially for those high harvested/planted ratio, which could provide useful data to guide planning and marketing for decision makers, stakeholders, and the public. 
    more » « less